Business & IT

Hybridni rostouci samoorganizujici mapa
Hybrid Growing Self-Organizing Map

Libor Horak

Abstrakt: Software se schopnosti se adaptovat najde uplatnéni v mnoha oblastech na-
piiklad v kontrolnich systémech, v hernim primyslu, simulacich nebo v systémech
zamefenych na predikci. Umélé neuronové sit€ mohou byt dobrym zdkladem téch
systémul. Hybridni rostouci samoorganizujici mapa pFedstavena v tomto ¢lanku se do-
kaze prizptisobovat novym situacim v pribéhu svého ,zivota“. Tento online trénink
je navrhnut tak, aby nedochazelo k zapominanti jiz nau¢enych véci. Tohoto chovani je
dosaZeno spojenim rostouci samoorganizujici mapy a dvouvrstvé neuronové site.

Klic¢ova slova: hybridni rostouci samoorganizujici mapa, uméla inteligence, katastro-
fické zapominani, neuronové sitg, dilema plasticity a stability, klasifikace

Abstract: Software with adaptation ability find their application in many areas for
example in control systems, game industry, simulations or in some prediction systems.
The artificial intelligence neural networks can be a good base for this type of software.
The hybrid growing self-organizing map architecture introduced in this article can
adapt for new situations. It also allows an additional online training without a catastro-
phic forgetting. These abilities are achieved combining the growing self-organizing
map and two layer feed-forward network.

Keywords: hybrid growing self-organizing map, artificial intelligence, catastrophic
forgetting, neural networks, plasticity-stability dilemma, classification

JEL Classification: C45

} 117

Business & IT

Background

Software with adaptation ability find their application in many areas for example in
control systems, game industry, simulations or in some prediction systems. The artifici-
al intelligence neural networks can serve as a good base for this type of software.

Neural networks have several abilities.

1) Generalization
2) Classification
3) Filtration

4) Association

5) Optimization

Every network is being taught for some type of inputs in training (learning) process.
In this process networks adapt their weights based on training patterns, which were
prepared before. Most types of networks can react to untrained inputs too. This ability
is called generalization, because the reaction of a network is created as a generalization
based on its knowledge. This kind of adaptation to new inputs is great for time series
predictions. But if we have completely different situation with new class of inputs, the
generalization will not be enough to solve this situation and the network will need to
learn again.

1. Catastrophic Forgetting and Stability-plasticity Dilemma

Human brain has a special ability to learn a new information without forgetting so-
mething. The most of computer programs and neural networks cannot do this. Some
network types are losing their memory during the learning process and others even
cannot learn at all and they can solve only one kind of problem - the one they were
designed to.

The knowledge of the network is stored in weights. The outputs are a function of wei-
ghts and inputs, hence if we change weights, the outputs and the generalization ability
will be affected.

outputs=f(w, w,,..w_I,1,..,I)

gree VWoptyy Logeeerty

118 }

Business & IT

If we want to adapt our network for a new situation with unknown inputs, we will have
to train network again or we will have to change network‘s architecture. If we use first
way and train network with new input patterns, we will change weights and for the
same inputs we will get different outputs.

outputs _ =f(w,__.w w 1,1,.1)

w Lnew? " 2new?*""? " nnew? 17 T27°°"7 T

outputs = outputs__

W

After this additional training network is prepared to handle new situation, but change
of weights has a negative effect to network‘s reaction to the old inputs. This behaviour is
called a catastrophic forgetting, because network can easily lose all stored information
in memory. This is a general problem for most of neural networks for example back-
-propagation networks or self-organizing maps.

The catastrophic forgetting is defined as a complete forgetting of previous learned in-
formation by a neural network exposed to new information. (Mermillod, Bugaiska, and
Bonin, 2013, p.1)

Looking for a balance between learning new information and losing learned informa-
tion is called a stability-plasticity dilemma. The stability-plasticity dilemma was first
introduced by Stephen Grossberg (Grossber, 1980; Grossber, 2000; French, 1999).

Stability of the network means that a pattern should not oscillate among different clus-
ter units at different stages of training.

Plasticity is the ability of the net to respond to learn new pattern equally at any stage of
learning. (Rajasekaran and Vijayalakshmi Pai, 2011, p.125)

The stability-plasticity dilemma must be solved by every brain system that needs to ra-
pidly and adaptively respond to the tlood of signals. (Grossberg 2000, p.2)

2. Growing Self-Organizing Map with Test Feed-forward Network

This paper shows hybrid system consisting of a growing self-organizing map(Villman,
Bauer, 1998) (GSOM) and a two layer feed-forward neural network (FFN), which satis-
fies both the stability and the plasticity requirement and it is prevented from the cata-
strophic forgetting. The plasticity is achieved by changes of the GSOM architecture in
the training process and the stability is guaranteed by the Test FFN. The whole system
serves for inputs classification. Example of the system architecture is on figure 2.0.

} 119

Business & IT

Figure 2.0 - Hybrid self-organizing map architecture

GSOM Test FFN

Class separation

Output neuron E
>
GSOM E
Winner =
o
(01-W1)2 (0a-w4) SVSOM 5
inner
(02-W2)" (03-W3j € O
—
Q
>
© i
4+
3
2 O
)
=]
o
;O
)
>
@ Inputs diferencies
4+ threshold neurons
- a
2 £
o
e
>
2 |
£

1 12 13 14

As most of neural networks this system works in two modes.
0O Calculation mode

0 Training mode

The GSOM part creates system result in both modes and the FFN part handles results
monitoring in the calculation mode and a results testing in the training mode.
2.1 Growing Self-Organizing Map Architecture (GSOM)

The growing self-organizing map has two layers called an input and an output. GSOM

=
function is to classify an input vector I to one class ¢; from a group of learned classes €. G

Ce{C,C...Cp}

1=

120

Business & IT

Its architecture and function is very similar as a common self-organizing map for exam-
ple Kohonen network (Rajasekaran and Vijayalakshmi Pai, 2011; Kohonen 1990), but
GSOM output layer can be extended by new neurons in the training mode. This way
the network adapts itself to a new situation.

Input Layer

—

The input layer serves as an interface to the whole system and prepares the input vector 1

for the output layer. It consists of input neurons. Number of input neurons N depends on
—

N
the size of the input vector 1. The input vector Iis a situation deseription. Each value ;
represents some important situation attribute.

I={nL...1)

GSOM Input Neuron

Number of inputs 1

Threshold
Input Qutpu
Inputs inputs € (—oo; o0)
Activation function filx)=x
Threshold threshold € (—co; @)
Weight 1
Output Output = f(W # [— threshold)

Output Layer

Each output neuron in this layer symbolises one class C, from the group C. GSOM out-
put layer has an adaptation ability. It can be extended by a new output neuron in the
training mode, so we can easily add new classes to our classification C. It is done by
adding new neurons to the output layer. This principle follows the plasticity rule, be-
cause there is no change of weights in the other output neurons.

} 121

Business & IT

o € 1C

m+1? m+27""cm+k}

c-cuc,,

E‘u’(‘!'y UthPUt neuron has a connections to each il'lPl!t neurons. For each connection has a

weight w,. AllW, create weight vector W and it represents an average representative R, from

class C..
W =R = {W,W,...Wy}
GSOM QOutput Neuron
Number of N)
nputs (01-W1)
(02-w2)’ Output
Threshold i} B
(O3-W3)
Weights Wariable
Gutpm N
Output = Z{I,- — W52
=0

The output value of output neuron represents a distance between average Llass

1cprt,5u'|tatw-3R and the input vector 1. Tn other words how much is the input vector It

different from average class representative R.

Finding Winning Neuron

The Winning neuron is defined as an output neuron with the minimal value of the output
O,im» hence its average class representative R, is the nearest to the input vector I and the

winner represents the most suitable class Cy iy for the input vector 1.

Owin: min (01702""’Onum.ofoutputneurons)

Output Quality
The quality of an output is defined as a function of inputs differences Id,,, ; between single

attributes I, of the input vector Iand single winning neuron weights W, .. The last quality
parameter is called class difference Cdy, and it is equal to winner's output value 0.

122 }

Business & IT

Id,. =0-W,,.)
N
deiﬂ = Owin = Z(Idwin.i)
=1

QHGEEE}F = f(‘fdwiﬂ: JrI"'jb»rzn,].ll Idwin.ir neey Idwiﬂ,."l.-‘)

This extended approach to the output quality dealing with every input attribute I indi-
vidually allows to separate inputs to defined classes more accurately.

2.2 Test Feed-forward Network (FNN) Architecture

The Test feed-forward network function is testing quality of the output. If quality test
fails in the training mode, new output neuron to the GSOM output layer will be added
and the system will adapt to a new class of inputs.

We can test quality of the outputin the calculation mode too. There won‘t be any effects
on the system architecture, if test fails, but we can log this failure as an information
about new unknown situation in the system environment. Based on this information
we can create new training patterns and train the network again.

Input Layer

Theinputlayeris used to compare input differences1d,; ;and the class difference Cd,
with input precisions Ip, and a class precision Cp. Precisions define borders between
classes C, in our classification C. Higher precision values create bigger classes other-
wise lower values make classification more sensitive and sort inputs to more smaller
classes.

FNN input vector I, is created by all differences Id,,;,,; and €d,,;,, hence the input layer
has N + 1 neurons. Where N is number of GSOM input neurons.

—_—

Lioer = {Owin- (Il - Ww[ﬂ.l)zv (12 - szn,ﬂ)zJ ey (L\.’ - Ww[n.!‘.‘)z}

Each input neuron is one little precision test so the class precision Cp is set as a thre-
shold for firstinput neuron and all input precisions Ip,are thresholds for remaining in-
putneurons. If some difference is higher than precision, input neuron will be activated
and this part of precision test will fail.

} 123

FNN Input Neuron

Number of mputs 1
Threshold
Input Outpu

' S0-1
Activation function f{x}z{x = }

r=0-—10
Threshold Variable
Weight 1
Output Qutput = f{W « I — threshold)
Output Layer

The output layer has only one output neuron, its function is to decide if the output
quality test fails or not. This decision is based on outputs from all input layer neurons.
If one of them is activated, the output neuron will be activated too and the quality test
will fail, otherwise the output neuron will remain inactive and the quality test will pass.

FNN Output Neuron

Input

Number of 1

inputs
Activation L _fx=x0-=1

function fla)= {x =0-= 0}
Threshold 0

Weight 1

Output N+1

Output = f(z W}Il-)
=0

Business & IT

3. Fast training process

In the training mode (figure 3.0) GSOM weights and architecture are adapted. Test FNN
has only testing function and there are not any weights or architecture changes. The
fast training process has only one training epoch, so the network learns each training
pattern only once.

Training of the Untrained Network

The untrained network starts with only one neuron in the GSOM output layer. This
neuron takes the attributes of the first training pattern as its weights.

Rfu-'sr = Wf:r:.': = szrsr = {WIJ WEI"'J 1'1":'\.’} = {Pj_.Pg;---;R\r}

First class C,, , and its average class representative R, are created. There won‘t be any
changes of weights for this neuron in the training process anymore. This “no change of
weights” principle is applied to all future output neurons. When aneuron is created, its
weights are set to constant values. This approach makes training process liable on the
training patterns order. This can be a limitation in some situations.

Training process in steps:

1) Calculate outputin the GSOM input layer for the first training pattern
2) Setfirst output neuron weights

3) Whileis there some untrained pattern do

4) Calculate outputin the GSOM input layer

5) Calculate outputin the GSOM output layer

6) Find winning neuron in GSOM

7) Test quality of the GSOM output in Test FNN

8) [Iftestfailed add new neuron

9) Setnew neuron weights

10) Gotostep2

11) End of training

125

Business & IT

Adding new neuron

I[f FNN precision test failed, a new neuron will be added to the GSOM output layer. This
neuron represents new class C,.4,. The new neuron weights will be equal to individual

.
attributes P, of the training pattern P.

—_— —

Rnﬁw =]'Jll‘":':ew =P= {prz----rmv} = PIJPE-"'!R'J}

There are no changes in other neurons, hence plasticity principle is satisfied and the
catastrophic forgetting is prevented.

Additional Online Training

Thanks this ability we can switch to the training mode after some time in the calcu-
lation mode. I call it an “additional online training”, because the network is adapting
during runtime. The additional online training process starts at the step 3 in training
process steps. After the additional training network handles known inputs with same
output and for unknown inputs creates a new better output.

Figure 3.0 - Fast training process

H Get First Pattern H Set Output Neuron Weights J

A Prepare Training Pattern [
There is not any training pattern I

&

GSOM

Get New Pattern

Finish Training

(Input Layer - Calculate Outputs]

[Qutput Layer - Calculate Outputs] Set New Neuron Weights
[Find Winner Qutput Layer Neuron] [Output Layer - Add New Neuron)

Use Winner As Inputs For FFN

FFN

[Input Layer - Calculate Qutputs]

[Output Layer - Calculate Output]

Output = 0 Output = 1

126 }

Business & IT

Conslusion

The hybrid growing self-organizing map architecture introduced in previous chapters
can adapt for new situations. It also allows the additional online training without the
catastrophic forgetting. These abilities combined with the fast training process without
weight changing make this architecture suitable for situations, when we have some par-
tial classification prepared from previous analyses and we want to extend this classifi-
cation by new classes. Previous analyses can be for example a trained Kohonen map or
some growing self-organizing map.

Growing Self-Organizing Map with Test Feed-forward Network is suitable for:

0 Controlling and monitoring systems which work in unpredictable

environment

O Testing systems when we want to test if our classification meets precision for

all the inputs

O Interactive simulations systems e.g. building evacuation

O Games

Finding proper settings (GSOM class precision and inputs precisions) of the Test feed-
-forward network without a previous analyse can be difficult. This limitation makes de-
scribed system unsuitable for analysing unknown situations.

Reference

[1]

[2]

[3]

[4]

[5]

Rajasekaran, S., Vijayalakshmi Pai, G.A. Neural Networks, Fuzzy Logic, and
Genetic Algorithms Sythesis and Applications, PHI Learning Private Limited,
New Dehli 2011

French, R. M. Catastrophic forgetting in connectionist networks, Trends in
Cognitive Science. 1999, no. 4, vol. 3.

Grossberg, S. How Does a Brain Build a Cognitive Code?. Psychological Review.
1980, no. 1.,vol. 87.

Grossberg, S. Adaptive Resonance Theory. Technical Report CAS/CNS-2000-
024. Boston 2000.

Kohonen, T. The Self-Organization Map, Proceedings of the TEEE. 1990, no. 9.,
vol. 78.

127

Business & IT

[6] Mermillod, M., Bugaiska, A., Bonin P. The stability-plasticity dilemma:
investigating the continuum from catastrophic forgetting to age-limited learning
effects. Frontiers in Psychology. 2013, vol. 4.

[7] Villman, Th., Bauer, H.-U. Applications of the growing self-organization map,
Neurocomputing, 1998, vol. 21

Ing. Libor Hordk, Ceské Vysoké ucent technické v Praze, Thdkurova 7, 166 29 Praha 6, email: libor.
horak1@gmail.com

128 }

