
77

2 / 20122 / 2012Business & ITBusiness & IT

  OntoUML and UFO-A for So� ware Engineering

Robert PERGL

Zdeněk RYBOLA

David BUCHTELA

Ivan RYANT

Abstract: OntoUML is an extension to the well-known notation of UML by ontology-
-oriented conceptual modeling aspects. The OntoUML diagrams off er higher expre-
ssivity for conceptual modeling thanks to a fi ner categorization and defi nition of entity
types. This paper summarizes basic principles and concepts of OntoUML in the per-
spective of using OntoUML for development of information systems. The advantages
of higher expressivity of OntoUML are illustrated by an example. Other aspects like
transformation to an implementation model and further development of OntoUML
are discussed. Diffi culties for wider spread of OntoUML in the professional communi-
ty are also discussed.

Keywords: ontological modeling, conceptual modeling, OntoUML, so� ware enginee-
ring, information system development.

JEL Classifi cation: C63, C80

Introduction

The process of developing complex business information system consists of several
consecutive activities (Beck 1998). Assuming the requirements are defi ned and the pro-
ject infrastructure is set, three crucial phases lead to the so� ware realization – not con-
sidering consecutive phases of testing, deployment and support:

1) Analysis,

2) Design,

3) Implementation.

Figure 1. Simplifi ed model of so� ware development process denoting the key artifacts between the phases

78

Business & ITBusiness & IT2 / 20122 / 2012

In Figure 1, artifacts are shown to serve as inputs and outputs between phases of the
process. The quality of the input artifacts signifi cantly infl uences the success of each
phase – a high quality design cannot be created from low quality analytical sources and
a high quality implementation cannot be created from a low quality design. The quality
is infl uenced especially by these two factors:

  The quality of the modeling notation (Guizzardi, Ontological Foundations for
Structural Conceptual Models 2005).

  The preservation of information between phases (Pícka and Pergl 2006).

In this paper, we deal especially with the quality of the analytical output artifacts, in
particular with the conceptual model. Furthermore, we discuss the transformation of
the structural conceptual model to a structural implementation model in the design
phase.

Goals

The goal of this paper is to outline the possibilities and advantages of using the On-
toUML notation for conceptual modeling of business information systems. We deal
only with the structural models of the systems. Another goal of this paper is to outline
the issue of transformation of the OntoUML models into implementation models, in
particular for the pure object-oriented models. A side goal of the paper is to introduce
the OntoUML notation that is not yet well-known by the professional public and the
diffi culties for the wider spread of this notation.

Structure of the paper

In section 2, we introduce the origin and structure of OntoUML. In section 3, we show
the fundamentals and principles of OntoUML and provide the basic categorization
of entity types. Higher expressivity of OntoUML is demonstrated on an example by
comparing a UML and an OntoUML model. We discuss the task of transformation of
an OntoUML conceptual model into an implementation model in section 4. Finally, in
section 5, we outline the diffi culties for wider usage of OntoUML by professional com-
munity and we provide conclusions and further plans.

Origins of OntoUML

OntoUML was created as an attempt to merge the ontological analysis and conceptu-
al modeling. The goal of the intention was to provide the analyst with a set of various
entity types with precisely defi ned qualities and characteristics to model the reality as
precise as possible. OntoUML is based on the Cognitive Science knowledge about spe-

79

2 / 20122 / 2012Business & ITBusiness & IT

cifi cs of our perception and on the modal logic and the mathematical foundations of
logic, sets and relations. Syntactically it is built on the notation of UML class diagrams
(Fowler 2003) that is extended by a set of new concepts by special stereotypes – this for-
mally conforms to the UML metamodel (OMG n.d.) and therefore current CASE tools,
presentation tools, transformation tools, etc. can be used for OntoUML models. Unlike
other extensions of UML, OntoUML is created from the very foundations and constitu-
te a complete system independent of the original UML elements. It uses some aspects
(like classes), however, it omits a set of other problematic concepts (for instance aggre-
gation and composition) and replaces them with own ontologically correct concepts.

For the fi rst time, OntoUML was presented in the dissertation thesis by Dr. Giancarlo
Guizzardi that was defended with highest honors in 2005 at the University of Twente.
The thesis was later published as a monograph (Guizzardi, Ontological Foundations for
Structural Conceptual Models 2005). Since then, Dr. Guizzardi is one of the most active
scientist and author in the fi eld of conceptual modeling and he is a member of many
conference boards in the fi eld 1. Currently, Dr. Guizzardi works at the Federal Universi-
ty of Espírito Santo in Vittoria, Brasil, where he leads the NEMO research group.

Three foundational ontologies are created using OntoUML – UFO (Unifi ed Foundational Ontology):

1) UFO-A: Structural aspects – Objects, their types, parts, roles they play …

2) UFO-B: Dynamic aspects – Events, their parts and relations, object participation
in events, time-dependent behaviour …

3) UFO-C: Social aspects – Based on UFO-A and UFO-B, dealing with agents,
states, goals, actions, norms, social commitments and claims …

UFO-A is considered to be completed and proved in a set of projects in practice, no
more intensive research for its extension and development is expected. On the other
hand, UFO-B and UFO-C are targets of current intensive research.

OntoUML and UFO has already been applied in practice in many complex projects, for
example Off -Shore So� ware Development – conceptual analysis for an international
oil company, in projects in the fi eld of telecommunications and Media Content Man-
agement.

1) A list of publications available for downloading is published at the personal webpage of Dr. Guizzardi (Gui-
zzardi, Homepage n.d.).

80

Business & ITBusiness & IT2 / 20122 / 2012

Basic Principles of OntoUML

In the following, we deal only with the UFO-A and the OntoUML term is used for the
notation and UFO-A together. We focus on the structural aspects for static modeling of
structures.

Categories of the entity types

As mentioned above, OntoUML strictly distinguishes various categories of entities in
the reality around us. Part of the entity types’ hierarchy is shown in Figure 2.

Figure 2. The hierarchy of basic entity type categories in OntoUML

A set of strict criteria is defi ned to distinguish the categories:

  Identity – if the entity type provides or has an ontological identity. The types
that do not provide identity inherit the identity from their ancestors.

  Rigidity – the changeability or immutability of the type. OntoUML uses
modal logic for defi nitions of various aspects using operators necessity and
possibility in time and space – modal logic uses the term world. We distinguish
rigidity, anti-rigidity and non-rigidity (the negation of rigidity). Based on these
characteristics, we distinguish rigid, anti-rigid and semi-rigid – for some
instances rigid, for other non-rigid) entity types.

  Relational dependency – the entity type can exist only with a relation to
another entity type.

81

2 / 20122 / 2012Business & ITBusiness & IT

The table shown in Figure 3 summarizes characteristics of the basic entity type catego-
ries.

Figure 3. Characteristics of the basic entity type categories

Strict distinguishing of the entity type’s category has a practical signifi cance in the so� -
ware engineering. An example of a UML model and its OntoUML counterpart is shown
in Figure 4. It describes a small part of a university information system. The UML mo-
del defi nes only four entity types for a general person, a student, an employee and an
insured employee. The OntoUML counterpart strictly distinguishes several various ca-
tegories of the entity types and adds some other required types. The UML model misses
some important information that can lead to faulty design and implementation:

Figure 4. An example of a UML model and its OntoUML counterpart for a university information system

82

Business & ITBusiness & IT2 / 20122 / 2012

  In the UML model, we distinguish students and employees, both as subtypes
of a person. However, a person cannot be a student and an employee in the
same time – in this case, two independent instances must be created 2. On the
other hand, in the OntoUML model, we classify the student and employee
types as roles of the person type. This means that each person can be in the
role of a student or an employee at a faculty. The role category is anti-rigid.
This classifi cation enables the person to gain or lose the role or even be in both
roles at the same time.

  In the OntoUML model, the roles inherit the identity from the kind Person.
This allows a person to gain or lose a role without losing its identity in the
system. In the UML model, the student and the employee have their own
identity. When a student fi nishes its studies and becomes an employee, it loses
all its history in the system.

  Phases in the OntoUML model are anti-rigid, too. This means that the employee
can change its state between the insured employee and the uninsured
employee without changing its identity. Unlike the roles, any person can be
only in one and exactly one phase of the same phase partition. The rigid UML
model does not support changing the insurance state of a person without
changing the person’s identity. We could create an optional association
between an employee and an insurance entity type; however, we would lose
the polymorphism of employees. In the OntoUML, we can simply create an
association between the insured employee and a car entity type denoting that
only an insured employee can drive a car. This constraint cannot be expressed
in pure UML 3.

  A role in OntoUML is a relationally dependent type – there must be another
entity type connected to the role by an association with the minimal multiplicity
value of 1. This rule forces the analyst to search for the truth maker of the role
– what makes the kind entity to get the role – and to include it in the model. In
UML, there is no such concept.

Characteristics of the Whole-Part relationship

OntoUML also deals with the Whole-Part relationship in more detail than it is defi ned in
UML. UML defi nes composition and aggregation associations very vaguely and impreci-
sely. OntoUML brings more precise defi nition of the relationship and its multiplicities and
obligation from the point of view of both the whole and the parts. Omitting these important
aspects can result to faulty design and implementation because of the missing information.

2) There exist implementation solutions for such a situation, however, we focus on the structural conceptual
modeling and the way to express such characteristics on this level. We try to respect the rule that the conceptual
model should be maximal and complete.
3) Such constraints can be expressed by OCL invariants attached to the diagram, however, these invariants can
not be expressed directly by the diagram elements.

83

2 / 20122 / 2012Business & ITBusiness & IT

Types of the obligatory participation from the point of view of the
whole entity

The types of the obligatory participation from the perspective of the whole entity are
shown in Figure 5.

Figure 5. The types of the obligatory participation of the part entity from the perspective of the Whole

  Optional Part – the part entity is optional for the whole entity, the whole
instance can exist without any instance of the part entity.

  Mandatory Part – the part entity is obligatory for the whole entity. Any instance
of the whole must be linked to an instance of the part entity. However, the part
entity instance may change. An example of this type of obligation is a human
heart: a human must have a heart to live but the heart can be transplanted – the
instance of the heart is changed while the human instance does not. Another
example could be an engine of a car.

  Essential Part – the part entity is obligatory for the whole entity. Additionally,
the part entity is essential – the part entity instance can not be changed.
Changing the part entity instance would destroy the identity of the whole entity
instance. An example of this type of obligation is a human brain – the brain can
not be transplanted and even if it could be the human would be someone else
with new identity. Similarly, the chassis of the car can not be changed without
changing the car’s identity because the VIN number is printed on it.

84

Business & ITBusiness & IT2 / 20122 / 2012

Types of the obligatory participation from the point of view of the
part entity

The types of the obligatory participation of the whole entity from the perspective of the
part entity are shown in Figure 6.

Figure 6. The types of the obligatory participation of the whole entity from the perspective of the part

  Optional Whole – the whole entity is optional for the part entity. An instance
of the part entity can exist without any instance of the whole entity.

  Mandatory Whole – the whole entity is obligatory for the part entity. An
instance of the part entity must be always connected to an instance of the
whole entity. However, it can change the whole entity’s instance. An example
of this type is a kidney that can be transplanted from one person to another.

  Inseparable Part – an instance of the part entity must be a part of the same
whole entity instance for its whole life. An example of this type can be the
human brain, again, as it can not be transplanted.

Other characteristics of the participation in the Whole-Part relationship

All types of the obligation mentioned above stand for rigid whole and part entities.
When one of the types is anti-rigid, we have to distinguish, if the instance linked to the
anti-rigid type instance can change when the type changes its anti-rigid state – remem-
ber, a rigid entity can gain or lose a role and change its phase and when it gains one of
the roles or phases, it is always linked to the same instance of the other type. This cha-
racteristic is expressed by these meta-attributes of the relationship:

  Immutable Part – when an instance of the whole entity is in the anti-rigid
state, it is always connected to the same instance of the part entity.

  Immutable Whole – when an instance of the part entity is in the anti-rigid
state, it is always connected to the same instance of the whole entity.

85

2 / 20122 / 2012Business & ITBusiness & IT

OntoUML also defi nes the shareability of the part entity instance among the whole en-
tity instances. This characteristic uses similar notation as aggregation and composition
in UML but with a diff erent meaning:

  The full symbol ♦ or the meta-attribute isShareable = false stands for a not-
shareable part – an instance of the part entity can be a part of only one whole
entity instance at the same time.

  The empty symbol ◊ or the meta-attribute isShareable = true stands for
a shareable part – an instance of the part entity can be a part of multiple
instances of the whole entity at the same time.

It is important to mention that all these characteristics – the types of obligatory partici-
pation from the perspective of both the part and the whole entity and the shareability
of the part entity instances are completely independent of each other allowing mode-
ling of any combination of these characteristics as required by the domain reality.

Types of the Whole-Part relationship

OntoUML also distinguishes various types of the Whole-Part relationship and the ro-
les the parts take in the whole:

Quantity

  The whole consists of parts of the same type.

  The whole is infi nitely dividable into parts.

  The part represents all the material of the container.

  Examples: water in a bottle, stone of a statue, etc.

  Relation subQuantityOf: alcohol-wine, sugar-coff ee, etc.

Collective

  The whole consists of parts of other types.

  The collective is not infi nitely dividable.

  All parts take the same role in the collective.

  Relation memberOf: a tree – a forest, a student – a class, etc.

  Relation subCollectionOf: north part of a forest – a forest, cars – vehicles, etc.

86

Business & ITBusiness & IT2 / 20122 / 2012

Functional Entity

  The whole consists of parts that take various roles.

  Relation componentOf: a heart – a vascular system, a director – a company, an
engine – a car, etc.

Other parts of the UFO-A

UFO-A also deals in detail with associations, aspects (existentially dependent objects),
qualities (complex measurable attributes) and their domains and also with a redefi niti-
on of specialization.

Transformation of an OntoUML conceptual model into an
implementation model

While the conceptual model is the result in the case of conceptual analysis, in so� ware
engineering it is just one of the fi rst input artefacts for other development phases. The
process of implementation and source code creation based on the conceptual OntoU-
ML model with a set of additional information and rules not captured in the model
(behavioural models, state models, etc.) is possible but error-prone because the seman-
tic gap between the models is huge. The conceptual model also does not contain some
additional information required for the implementation just because of the principle
of the conceptual model – it must be independent of the implementation. However,
the implementation requires information like the associations’ direction for object na-
vigation, queries’ optimization and structure actualization.

Therefore, we suggest creating an implementation model that captures how the con-
ceptual model will be implemented. This model contains the structural information of
the conceptual model along with additional implementation dependent information
and it can be transformed into the source code.

Currently, we focus on the pure object-oriented implementation so the implementa-
tion model consists of classes, attributes, methods, inheritance and composition. Of
course, the conceptual model degenerates during the transformation, therefore even
the conceptual model must be discussed during the implementation.

Another option is the transformation to a relational model. The NEMO research group
focused on this transformation; however, the results are not public because the re-
search was done as a part of a commercial project. The relational implementation mo-
del seems to be more complicated because of the required application logic to make
the implementation valid according to the former conceptual model (in PL-SQL, for
example).

87

2 / 20122 / 2012Business & ITBusiness & IT

Conclusions

OntoUML and UFO can be used as tools for ontology-oriented conceptual modelling
in many areas where an exact mental model needs to be expressed:

  in the area of information exchange,

  in the area of term and relations defi nition (legal regulations, etc.),

  in the area of data integration (business and knowledge engineering, business
intelligence, e-government, etc.),

  in the area of service and component integration (heterogeneous environment).

In so� ware development, the information exchange is crucial for success of the project
and for satisfaction of the customer’s requirements and needs. OntoUML and UFO-
-A provide higher expressivity and precision for structural conceptual model than
UML models.

Important aspects of OntoUML

In our experience and opinion, a subset of OntoUML aspects is suffi cient for a so� ware
engineer. We consider these aspects as the most helpful:

  The distinguishing of various categories of entity types into Sortals and Non-
Sortals.

  The distinguishing of rigidity of entity types.

  The distinguishing of the obligatory participation in the Whole-Part relations.

  The distinguishing of various types of the Whole-Part relations.

  The distinguishing of material and formal relations.

  The distinguishing of aspect categories (qualities and modes).

We believe that a so� ware engineer fi nds the basic defi nitions and characteristics of the
mentioned concepts suffi cient for the so� ware development practise. Dr. Guizzardi
introduces very deep theory of mereology for the Whole-Part relations issue, however,
we do not consider this necessary for the so� ware development.

88

Business & ITBusiness & IT2 / 20122 / 2012

Diffi culties of OntoUML spread in the public community

OntoUML is not yet well-known a spread among the community of so� ware engineers.
There are several diffi culties that prevent its wider spread. We fi nd the following pro-
blems the most important:

  Lack of literature and information sources.

  Lack of public examples and case studies.

  Missing courses and training programs.

  Hardly available support and community.

  Missing CASE tools.

In the following paragraphs, the problems are described in more detail.

Lack of literature and information sources

There is only one complex and publicly available publication about OntoUML – the
dissertation thesis of Dr. Guizzardi (Guizzardi, Ontological Foundations for Structu-
ral Conceptual Models 2005). It is a top-class research thesis; however, it is really tou-
gh and intense for the public community. Additionally, it does not describe the most
recent version of OntoUML, one have to study the most recent conference papers, in
English.

Lack of public examples and case studies

As mentioned above, OntoUML was applied in several successful projects; however,
these projects were commercial and the results are kept private. Some case studies were
published in (Guizzardi, Homepage n.d.) but it is too little for adequate education.

Missing courses and training programs

OntoUML is taught by the Dr. Guizzardi’s team only at the Federal University of Espíri-
to Santo in Vittoria, Brasil, and at some universities in Holland. However, we started to
teach OntoUML at FIT CTU in Prague in the last year. Also, no commercial courses for
the public community of so� ware engineers are available worldwide.

89

2 / 20122 / 2012Business & ITBusiness & IT

Hardly available support and community

The community of OntoUML users and developers is too small and consists almost
exclusively of the NEMO team of Dr. Guizzardi and several other researchers in
Holland and Germany. The community is very important to support developers new
to OntoUML and to provide help, tips and sources for them. Currently, we try to build
a community of OntoUML developers at FIT CTU in Prague.

Missing CASE tools

Currently, a CASE tool based on the Eclipse platform created as a part of Dr. Guizzardi
dissertation thesis is available for OntoUML modelling. The tool supports all OntoU-
ML concepts of UFO-A and is capable of model checking according to the rules for
OntoUML models. However, the tool is not developed anymore and misses many im-
portant functions for practical usage in so� ware development. OntoUML models can
be also created in many current CASE tools for UML, however, these tools provide no
semantic support for OntoUML concepts.

Future plans and perspectives

The NEMO team currently works on a so� ware tool for behavioural simulation of enti-
ties in a structural diagram. Such a tool could help a so� ware engineer to verify a con-
ceptual model and validate it with the customer on a prototype of the structures.

Finishing the rules and defi nitions for the transformation of an OntoUML model into
various types of implementation models can provide a powerful tool for rapid develo-
pment, fl exible adaptability of models and consistency of the model and its implemen-
tation. However, this transformation will probably require additional information and
therefore it can be only semi-automatic.

UFO-B is intensively developed by the NEMO team. When it is developed enough, mo-
delling of dynamic aspects of information systems in OntoUML will be possible. Alt-
hough many methods, techniques and notations are available for process modelling,
the situation is similar to the structural modelling – the notation is not satisfactory
enough from the ontological point of view – see the analysis of BPMN notation (Gui-
zzardi, Can bpmn be used for making simulation models? 2011).

Acknowledegement

The OntoUML research, studies and teaching is supported by the Centre for Concep-
tual Modelling and Ontologies at Faculty of Information Technologies, Czech Techni-
cal University.

90

Business & ITBusiness & IT2 / 20122 / 2012

References

[1] Beck, K. Process Patterns: Building Large-Scale Systems Using Object
Technology. Cambridge University Press, 1998.

[2] Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 3rd edition edn. Addisson-Wesley Professional, 2003.

[3] Guizzardi, G. Homepage. http://nemo.inf.ufes.br/gguizzardi. —. “Can bpmn be
used for making simulation models?” Lecture Notes in Business Information
Processing - LNBIP, 2011: 100-115.—. Ontological Foundations for Structural
Conceptual Models. Telematica Instituut Fundamental Research Series, 2005.

[4] OMG. Metaobject facility. http://www.omg.org/mof.

[5] Pícka, M., and R. Pergl. “Gradual modeling of information system: Model of
method expressed as transitions between concepts.” ISAS, 2006: 538-541.

Department of So� ware Engineering, FIT CTU in Prague, Thákurova 9, 160 00, Praha 6
{robert.pergl, zdenek.rybola, david.buchtela, ivan.ryant}@fi t.cvut.cz

